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ABSTRACT

This report is a review of explioratory analytical studies of the influence
of energy conservacion on the mechanical behavior of a variety of models of mate-
rials in diverse test situations. The results are presented and discussed so to
display their physical implications rather than the details of their development.
The work is generally complemantary to the existing body of theory relating to
mechanical behavior. However, consideration of the necessary coupling between
the thermal and mechanical fields in deforming materials does suggest some new
approaches to the problems of fracture in solids and flow stability in fluids.
Some insights into the role of microstructure in determining the behavior of solids
arz also suggested.

The methods, soma of which involve the use of electric analogs of the mechan-
ical system, show how necking, yield and plastic flow may arise. In addition,
scale effects are introduced which are likely to be of interest in geophysical

phenomena.



Jeggoe -

THE ROLE OF ENERGY TN DEFORMATION

INTRODUCTION

We have been exploring the influence of energy conservation on the mechanical
behavior of materials. The approach involves the analysis of the behavior of
model systems. Our comncern has been the physical understanding and the mathema-
tical description of the responses of materials to stress and strain.

Historically, the energy balance has had an important place in the theory of
the mechanical strength of solids in which the work of fracture is compared with
the energy of new surface that is formed (1). However, the observed strengths of
materials often greatly exceed those computed on this basis. It may be inferred,
therefore, that energy consuming deformations generally precede fracture.

Our studies have roots in the discovery made by Copple, Hartree, Porter and
Tyson (2) who showed that the failure of a dielectric in an alternating field
occurs because the electric loss, which produces heat in the test piece, increases
rapidly as the temperature increases. As a result, regenerative thermal feedback,
a chain reaction effect, enhances the heating and can lead to thermal instability.
We contend that the response of materials to mechanical stress is similarly exo-
thermic and temperature sensitive,

Heat production in deforming materials has often been noted and is sometimes
comspicuous (3-7). Furthermore, these thermal effects have been suspected of influ-
encing mechanical behavior for some time (8)(9). 1In the current work, quantitative
relations between the thermal and mechanical variables in model systems have been
developed. This has been made possible by the use of modern computing machinery,
special analog devices and by the careful selection of problems.

In the text below, the various results (10-18) are reviewed and integrated.
These show that the effects of heating can indeed be decisive. Plausible physical

rationalizations have been provided for many details of the mechanical behavior of
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real materials including time and size effects, yield, necking, plastic flow and
fracture. Furthermore, these rationalizations are altogether complementary to the
main stream theories of the physics of materials and invelve the details of the
microstructure which are now being widely studied.

While some of these results seem to be directly applicable, emphasis has
been given to the physical insights that the analyses provide. These are broadly
relevant and could, for example, influence the strategy and tactics of material
development and design programs. Im addition, they are pertinent to the stabiliry
of flows and to large scale events of geophysical interest such as mountain forma-
tion and metecrology. Experimental tests of the theory are also discussed.

II. DISCUSSION OF THE MODEL

Every mathematical description of the mzchanical behavior of a material in-
volves a commitment to a model. For example, the theory of elasticity implies a
model of a solid consisting of elementary masses connected to cue ancther by uni-
form linear springs. More than a century ago Maxwell pointed out that the simu-
laticn of the behavior of real materials could be improved by including viscous
elements in the connections between the elementary masses. In this way, the im-
perfect reversibility of all real experiments cculd be described.

Visco-elastic models of the type suggested by Maxwell have been found very
useful for describing the behavior of bread dough, rubber, synthetic organic pely-
mers and other materials of commercial importance. In some of these cases rela-
tionships between the details of the model and the molecular structure of the
material have been proposed (20). These applications and correlations have been
particularly fruitful when the material under consideration is relatively soft.
Application to the harder materials which are more familiar to structural engineers
have been less successful.

This is precisely the expected consequence of energy conservation. All of

the mechanical werk done on a viscous element is converted to heat. If the amcunt



of work involved is low, the process is essentially isothermal. When, on the
other hand, the heat production is substantial, the coupling of the temperature
field with the mechanical field in the material cannot be neglected.

This coupling is particularly strong in the case of the viscous element be-
cause of its temperature dependence. For the purposes of the present analyses
the elastic elements are considered to be indifferent to the temperature. This
compromise is not essential but it greatly simplifies the computations. Further-
more it dees not offend our physical intuition since the relaxation phenomena re-
presented by the viscous elements are biased diffusions which characteristically
have an exponential dependence on temperature. On the other hand the reversible
phenomena represented by the elastic elements depend on the potentials of inter-
molecular force which are much less sensitive to the temperature.

As a result of coupling, the temperature depends on the length of time that
the heat source, the viscous process, has been operating. Thus, the apparent
viscosity can be expected to be time dependent. To the extent that heat conduc-
tion occurs, the temperature distribution, and therefore the apparent viscosity,
also depends on the thermal boundary conditions and the size of the sample.

In the purely viscous model, the temperature changes can also be expected to
influence the stability of laminar flows and the development of cavitation in
liquids (i0-11). In viscoelastic materials, some of the time and size effects
which are often observed in experiments with real materials can be rationalized in
a straightforward manner. From this point of view, the equations describing the
behavior of a single element are non-linear. It is not necessary, therefore, to
assume elaborate spectra of relaxation times to account for the intricate behavior
that is often observed in experiments.

Although the approach is in principle more general, the analyses are simplifi-
ed by focussing attention on one dimensional problems as is the custom in many

rheological discussions. Thus, the material is represented by an array of masses



connected to one another in series through combinations of elastic and viscous
elements. For sufficiently slow deformations, the inertia of the masses may be
neglected., However, in this quasi~-static situation, the connections between the
masses cannot be lumped, as is done in classical rheology, because, even though the
stresses are uniform, the temperature in the sample need not be. This simple fea-
ture of the model can account for some of the non-uniform strain distributions that
are often observed in real deformations. We recall that the necking of a wire or
filament is rarely if ever initiated close to the jaws of the testing maching
which can function as heat sinks (12)(21).

At higher rates of deformation, or more accurately at higher rates of applied
bounda;y velocity, the inertia of the elementary masses retards the propagation of
the disturbance into the material. The earlier appearance of the stress on the con-
necting elements near the moving boundary produces local heating and enhanced local
strain response. This can account for what has been called plastic wave propaga-
tion. Obviously, at sufficiently high rates of boundary motion, thermal instabil-
ity and fracture can occur locally before the stress wave arrives at the more re-
mote stations in the sample at which sensors may be located. This effect can comp-
licate the experimental study of the influence of strain rate on the behavior of
materials. These dynamic effects, which can occur in homogeneous materials, are
also of interest in heterogeneous systems simulating, for example, imperfect crys-
tals or composites.

ITLI. DISCUSSION OF THE ANALYSIS

The simplest connection between the elementary masses that is of interest in
this context is the purely viscous element (10). In the quasi-static deformation
of such a model the uniform stress,s , is related to the local velocity gradient,
du

agf,by the coefficient of viscosity,Y], which 1s assumed to be temperature depend-

ent. A plausible form for the temperature dependence is indicated by
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The rate at which heat is produced in this element is given by the product of the
stress and the velocity gradient. In an isolated element, the heat production

rate can be equated to the product of the heat capacity and the rate of temper-

ature rise.
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Combining these equations we have, for example,
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Solution of this equation for a constant applied stress shows that the temperature

becomes unbounded in the finite time,

<
t, = S %)
ae*
which depends on the stress level and the properties of the model. 1In other words,
the typical adiabatic response of a viscous model to a constant stress in unstable.

Notice that the constant strain rate case for which the adiabatic energy

balance equation would have the form

> _a(r- 72) 27
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has very different solutions. It turns out that in the time %o’ the stress decays
to one half its initial value. While the temperature can become very high it re-
mains finite. The threat of instability and the distinction between the constant
stress and constant straln rate cases are among the elementary consequences of
energy conservation in imperfectly reversible processes.

In general, the connections between the mass elements are not isolated and
heat can flow between contiguous elements and to the boundaries of the sample.

The quasi-static energy balance condition then becomes a partial differential



equation, for example
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in which y is the single space coordinate and the heat capacity, ¢, and the therm-

(6)

al conductivity, k, are assumed to be independent of temperature. Closed form
solytions of this equation have not been obtained. However, various digital and
analog proceduras are applicable.

Unlike equation 3, equation 6 has steady solutions when the heat loss by con-
duction can balance the heat generation rate. This is possible when the thermal
relaxation time of the sample is short relative to the adiabatic catastrophe time,

t . If the boundaries are isothermal and separated by the distance 1, a character-

@0

istic thermal relaxation time is given by

22.
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That is, stability depends on the non-dimensional time ratio
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It is on this basis that the energy conservation condition leads to a dependence
of the maximum stress for stability on the size of the sample.

The abbreviated discussion given above is not intended to suggest that the
temperature coefficient of viscosity, a, is constant and independent of the temp-
erature. In equation 1 the temperature dependent exponential should be of the form

suggested by the concept of the energy of activation for the process. In these &arms

."_Eﬁ- ,'._g
a = FF <= (9

which indicates a strong dependence on the initial temperature. The constani Ej,

the ratio of the energy of activation to Boltzmann's constant, is as clearly related
to the physics of the material as the viscosity itself. However, the results obtain-
ed by the use of "a" are similar to those obtained with EA and the discussion is

then somewhat simpler.

The application of the above analysis to the quasi-static viscoelastic case has



also been.made (13). Generally, the same type of numerical analysis has been used
as for the purely viscous model. However, in the dynamic case, the velocity grad-
ient becomes a function of the space variable so that the computation is more
arduous., It is in this connection that the analog methods discussed below are
particularly useful. In the static problems the results of the analog method are
the same as those of the numerical computation.

Iv. DISCUSSION OF THE ELECTRIC ANALOG METHOD

It is well known that the responses of selected electric networks are alto-
gether analogous to those of models of materials of the type described above. 1In
these circuits, if the voltage is the analog of stress, a capacitor is the analog
of an elastic element, a resistor is the analog of a viscous element, an inductor
is the analog of a mass and the current is the analog of the strain rate. One dis-
tinctive feature of our systems is the use of temperature sensitive resistors
(thermistors) to simulate the temperature dependent viscosity of the model material.

The equations for the thermistor

—-a,(eﬁ—7;)

V=T, (10)
2 aL(7:—7') d7 2¥7
A A

are entirely analogous to equations 1 and 6 above. Other non-linear circuit el-

(11)

ements are also available and could be used in conjunction with the systems under
consideration.

The network shown in figure 1, with the thermistors in thermal contact with one
another, simulates the model described in section II for which the connections be-
tween the elementary masses are an elastic element in series with a viscous element
(Maxwell Model). For the quasi-static case the voltages along the line (numbered
stations) are always equal. The shunt capacitors may then be lumped but not the

thermistors. A current (strain rate) applied between A and B would charge the



lumped capacitor and increase the line voltage until it became high enough so that
the sum of the thermistor currents became equal to the total applied. If this cur-
rent is low enough so that the heating of the thermistors is negligible the network
behavior would be analogous to that of a linear Maxwell model and a steady voltage
would develop.

At somewhat higher currents the heating of the thermistors would gradually
lower their resistance and the line voltage would be reduced. The plot of line
voltage against time would have a maximum corresponding to a yield point. If for
some reason, for example heat conduction, one of the thermistors were to become
hotter than the others, the current would tend to concentrate in that branch cor-
responding to strain rate concentration or necking. If, then, the energy stored in
the capacitor were sufficient, catastrophic local heating could follow yield cox-
responding to local, perhaps brittle, fracture.

Since in the static case, the voltage drops across the inductors are zero and
the capacitors can be lumped, this network is more complicated than in necessary.
However, in the dynamic case, there is a voltage drop across the inductors, simue
lating the inertia of the elementary masses, and the capacitors are not equally
charged. That is, the stress level (voltage) depends on the space variable as well
as the time,

The network shown in the figure is an example of an electric transmission line.
The response of this line to electrical excitation is precisely analogous to the
response of the mcdel material to mechanical excitation. The pair of partial dif-

ferential equations for the voltage and current

!‘;:Lg% y (12)
; / v
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are to be compared with those for stress and strain rate

(15)

8
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While some studies (14) were made using the line as it is shown schematically
in figure 1 there are some objections to this system., In the first place an induct-
or, being typically a coil of wire on an iron core, not only has resistance but
tends to have a rating dependent on the current that is being passed. In addi-
tion, it is only at considerable expense that well matched capacitors and induct-
ors can be obtained. Furthermore, the time scale of fhe experiments depends on the
ratings of these components and this is not always convenient.

These difficulties were overcome in later work (11)(15)by using electronic
integrators to simulate the inductors and capacitors. This simulation depends on
the fact that the current through an inductor is proportional to the time integral
of the applied voltage and the voltage on a capacitor is proportional tc the time
integral of the current. Furthermore, the electronic integrators are not only
satisfactorily accurate but the proportionality factors can be selected arbitrari-
ly and made to depend on the local values of the temperature, stress or strain.
This versatility has not been exploited in the work done so far.

The schematic of the circuit equivalent to that shown in figure 1 is shown in
figure 2. The symbols are those used in the literature of analog computation. The
power capabilities of the amplifiers and the size of the thermistors that were used
were such that the more dramatic non-linearities could not be displayed. However,
this is not a necessary objection to the use of the system.

The discussion of the analog so far applies to the responses of homogenesous
materials subjected to arbitrary initial and boundary conditions. By comnecting
two transmission lines, one of which is energized but in equilibrium, the impact of
a projectile on a target can be simulated and some of the arbitrariness of the ini-
tial conditions could be avoided. Lines representing composite or heterogencous
systems can also be applied. These give some special insights into the importance
of microstructure to mechanical behavior.

We note in passing that the typical transmission line problem or the typical de-



formation problem involves the application of excitations only at the boundaries,
In such simple problems as Poiseuille flow, excitation is applied at intermediate
points in the material, The analog is well adapted to deal with this situation.

V. DISCUSSION OF RESULTS, QUAST-STATIC PROBLEMS

The behavior of the model may be inferred either from numerical solutions of
the non-linear differential equations of from the responses of the analogs. The
general implications of thermal feedback are exemplified most simply by the behavior
of a single thermistor which represents the quasi-static behavior of a slab of homo-
geneous viscous material in shear. Figure 3 shows the history of the current in
response to various constant applied voltages. When the voltage is low enocugh so
that the heating is negligible this element behaves like an ordinary, constanit re-
sistance. At somewhat higher voltages the current becomes time dependent. If the
heat losses from the thermisotr can offset the power that is dissipated, steady
states are possible. At a critical value of the voltage, the increase of the cur-
rent and temperature become catastrophic.

In a material in which heat conduction is the only mode of heat transfer, as in
solidg}the thermal catastrophe can be averted by fracture, 1If convective heat trans-
port is possible, as in liquids jthe response can be a transition to turbulent flow im
which the heat transfer rates are enhanced. In a volatile 1iqui%)cavitation is an
energy consuming process which also averts the thermal catastrophe.

Figure 4 shows the voltage history in response to various constant applied cur-
rents. Here, at the first instant, the heat production is proportional tojfﬁif
Later, as the thermistor warms up, the resistance becomes lower so the heat produc-
tion is reduced. In this analog of the constant strain rate case, the temperature
may get high encugh to destroy the material but the degenerative nature of the feed-
back makes it easy to distinguish from the constant stress case.

The static Maxwell model is simulated by a circuit consisting of a thermistor

in paralell with a capacitor as shown in figure 5., At low values of the applied
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current the voltage or stress shows the typical linear response. At higher currents,
the steady voltage is reduced because the temperature of the thermistor rises. A
voltage maximum can also appear corresponding to a yield point. Notice the low sen-
sitivity of the steady voltage to the current. This is somewhat similar to what is
called plastic flow.

As shown in figure 6 relaxation oscillations can also be generated correspond-
ing to stick-slip behavior. Under some conditions the energy stored in the capaci-
tor while the thermistor is heating up is sufficient to catastrophically destroy the
thermistor in a manner analogous to brittle fracture.

Figure 7 represents the behavior of ah eélastic element in paralell with
the viscous element (Kelvin-Voigt Model). Figure 8 shows the behavior of a three
element model. The shapes of these various curves are familiar to students of the
deformation of materials, Similar results were obtained by numerical methods and
discussed in reference 13,

In typical quasi-static experiments involving large deformations, the geometry
of the test piece is not constant. The simple results discussed above apply to the
shear of infinite slabs and do not take this effect into account. The influence of
shape changes and heating under quasi-static adiabatic conditions were discussed in
two reports. In one of these the responses of a cylinder to axial compression and
elongation at constant rate and at constant load were computed (16). A typical
result is shown in figure 9. This shows the response of a viscous material to a
constant rate of compression. Here the destabilizing effect of the temperature
rise can be offset by the increase in the cross section of the test piece. This
result is likely to be relevant in material forming processes.

A more complicated, but practically interesting situation is produced by the
blow of a hammer on the cylinder. In this case, the duration of the experiment is
short in comparison with the time required for the establishement of stress equili-

brium, but long in comparison with the thermal relaxation time. The stress depends
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not only on the instantaneous cross section of the piece, but also on the instan-
taneous velocity of the hammer which is a variable and becomes zero at the end of
the experiment. A typical result is shown in figure 10. This study (17) shows
that the response appears to be almost perfectly elastic at low hammer velocities,
but almost perfectly viscous for heavier blows. This kind of non-linearity of re-
sponse is very commonly observed in practice. The reversible part is due to the
combined elasticity of the hammer and the test piece, but is dominated by that of
the hammer. This variable deformation rate situation is easy to produce in the
laboratory and is more likely to occur in nature than the constant deformation rate.

Other static deformations of homogeneous models of materials can be studied
by straightforward extensions of the analyses discussed above and some have been
mentioned in the referenced articles. Heterogeneity in the model can also be an
important consideration in the static case. For example, the relevant character-
istic thermal relaxation time of a multilayer configuration in which viscous and
elastic materials alternate can depend on the thickness of a single viscous layer
and not directly on the gross volume fraction of the viscous material. As a re-
sult the static mechanical stability of the system can be expected to depend on
what might be called the microstructure (18),

VI. DISCUSSION OF RESULTS, DYNAMIC PROBLEMS

In the dynamic problem the stress depends on the space variable as well as
the time. This leads to a more complicated analytical situation. However, the
equations for constant values of the model parameters in the one dimensional case
have had a great deal of attention in connection with the propagation of electrical
disturbance in transmission lines. These analyses are not directly applicable
when the coefficients have the complicated dependence on time which arises from
the energy condition. However, the idiom developed in the constant coefficient
case is useful. For example, in the electrical case one speaks of the attenuation

and distortion of signals, the filtering characteristics and Q (the quality factor)
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of the line. These have precise counterparts in the mechanical system.

Consider first the response of a slab of purely viscous material to the ap-
plication of a shear velocity at one of its boundaries. This is analogous to the
behavior of the network of figure 1 with the storage elements, the capacitors,

left out. The relevant constant coefficient equation:
[ 23X - 3 < 9T
3 oY (16)

is recognized as the diffusion equation and is analogous to
DU - é?_ " QU
¥ o¢ 4 2% in

The propagation and attenuation in the material depends on the values of the
coefficients. When the level of excitation is low and the heating of the thermis-
tors is negligible the linear theory is applicable. At higher levels of excila-
tion the effective viscosity is reduced. The local values of the "velocity" then
decrease and the attenuation increases. The nature of the disturbance that reach-
es an interior station or the far boundary departs from that predicted by linear
theory. Examples are discussed in reference (11).

A particularly interesting situation develops if the applied velocity is
sinusoidal. This generates a velocity wave with a nominal depth of penetration
which depends on the frequency as well as the material properties. As the fre-
quency increases, this depth decreases which increases the local heat production
rate. The temperature rise raduces the viscosity which further reduces the depth
of panetration. Thus, another regenerative feedback loop develops which must lead
to thermal instability. 1In a real physical system, a reasonable response to this
instability would be cavitation which can consume a large amount of energy and
avert the thermal catastrophe. A possible explanation of acoustic cavitation thus
arises.

In the dynamic Maxwell model, two propagation modes can occur. One of these

is the elastic mode which is lossless and characterized by a velocity (I€) . The
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time and distance are related by

& - "

The other is the diffusion mode which is lossy and dispersive. In this mode the

time and distance are related by

L &
4= kY 09

Now we notice that close to the source of excitation; that is, for y small,
tp is less than tg. Thus, the initial response is essentially viscous. Farther
from the source tg is less than t. Thus a sensor remote from the excitation would
show an initially elastic response. At an intermediate station the elastic process
would overtake the viscous process. Effects of this sort can be cobserved in exper-
iments.

One of the reasons for the above development is that it leads to a new non-
dimensional time ratio which is a property of the ﬁ?terial and its size, We have

rraE): B s gk
Zp d Py
which emerges as a natural property of the material which is related to the Q of
the analogous transmission line. This is a vibration damping index. Its value
determines whether or to what extent "ringing' occurs in the sample.

A number of "computations" are described in reference 15. One of these re-
lates to more or less the same problem discussed earlier by von Karman and others
(21) in terms of plastic wave propagation. Typical results are shown in figure }f.
The use of the analog eliminates the necessity for the use of artifical constitutive
or state equations for the material. Since authentic physical concepts are involv-
ed these methods have some advantages over methods which use the purely mathema-
tical concept of plasticity.

Another feature of the analysis is the development of a dependence of the
effective Q of the line on the amplitude of the excitation (14)(15)(17). Some of

Mason's experiments with metals (23), show that above a critical amplitude this

14



dependence becomes strong. Further attention is now being given to this point of
contact between the analysis and experiment,

The dynamic behavior of the model consisting of alternate elastic and viscous
layers has some special interest in connection with the behavior of imperfect cry-
stals. When, in such a model, an instability develops in one of the viscous lay-
ers, a stress relief wave propagates from that layer toward the boundaries of the
sample. For a time related to the acoustic velocity and the size of the sample,
the heat source in the layer is, in effect, turned off. That is, the feedback loop
is opened. If during this period the layer can cool, the recovery from the catas-
trophe can be essentially complete.

The occurrence of the non-lethal catastrophe depends on the relative magnitude
of the acoustic transit time in the sample and the thermal relaxation time of the
layer in which the instability occurs. The non-dimensional ratio of these times
suggests a criterion for ductility in the material. Thin viscous layers, which
have short thermal relaxation times are conducive to ductility. This arguement,
developed in greater detail in reference (18), leads again to a possible connec-
tion between microstructure and mechanical behavior. The fact that dramatic therm-
al events can be observed to accompany the formation of slip band in metals, tends
to confirm the relevance of this analysis (6).

CONCLUDING DISCUSSION

While a few correlations between the results of analyses and experiment have
been cited in the text above, many others are possible. For example, heating ef-
fects can occur in fatigue tests. These can not only be important by themselves
but also can increase the chemical reactivity of the material with its environment
to produce secondary effects. To the extent that mechanisms of the failure pro-
cess are involved, contributions to the theory of reliability are suggested.

The important ideas of work hardening and work softening are given a richer

physical interpretation. In this connection, the remarkable durability of rubber
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in tires may depend to some extent on the fact that the restoring forces in this
material increase as work is done and the temperature increases.

The analyses also suggest a revised attitude toward what are called proper-
ties of materials., The non-dimensional parameters or similarity criteria which
arise are of particular interest in this connection. Even in conventional terms,
what may be called the viscosity of solids is given an important role.

Given the model, there can be no question about the validity of the analyses.
The problem is the identification of the model with the diverse realities of the
situation. As the model becomes more realistic, and therefore more complex, the
analyses become more difficult. Then the physical insights that are developed by
examining the "stripped down" models may still be useful.

While in the discussion, the versatility of the approach is emphasized, its
application is not without hazard. For example, one of the key ideas in the
development is that of regeneration. Regenerative processes entered the theory of
material failure many years ago in connection with the direct current, electrical
breakdown of gases (24). There, the regenerative process and instability involves
the development of avalanches of electrons. In that case the above analysis can-
not be applied with confidence because of the difficulity of defining a temperature
in mixtures of electrons and atoms. This complication does not arise in the low
voltage experiments of Copple et al (2) or in the mechanical experiments which are
considered here.
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Figure 1.- Electric circuit analog of homogeneous, one dimensional Maxwell Model
Material taken from reference 1L. The configuration represents a slab excited
at the left hand boundary and held fixed at the right.
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Figure 2.- Simulation of the circuit of figure 1 taken from reference 15.
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Figure 3.- Time dependent current through a thermistor at various constant
voltages showing the effect of regenerative feedback.
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Figure 5.- Behavior of a thermistor analog of a Maxwell Model Material st
various constant currents showing phenomena resembling yleld and plastic flow.
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Figure 7.- Time dependent voltage across a thermistor analog of a Voigt model.
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of axial compression showing how the force decrease due to thermal softening
at high strain rates can be offset by the increase in the cross section
(from ref. 16).
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Figure 10.- Plots of temperature, force and length as functions of time for a
viscoelastic cylinder subjected to hammer blows of various severities. While
the material shows isothermal, essentially elastic behavior at low levels,
damping is conspicious at the higher levels (from ref. 17).
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Figure 11.- Plots of the stress distribution in a slab of viscoelastic material
at various times after the application of a velocity step at one boundary.
The left hand curves show the essentially linear evolution of the wave at

The other shows the stress relief at the input

low levels of excitation.

end due to heating when the level is higher (from ref. 15).
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